3. TÉTEL 1. Információs társadalom 1.2. Információ és társadalom 1.2.1. Az informatika fejlődéstörténete • főbb események a kezdetektől napjainkig, Neumann-elv, számítógép-generációk A kezdet kezdete A számolást segítő eszközök története gyakorlatilag egyidős az emberiség történeté- vel. Az ősember a számoláshoz eleinte az ujjait, később köveket, fonaldarabokat használt, az eredményt a barlang falába, csontba vagy falapokba vésve rögzítette. A nagyobb számértékek megjelenésével kialakult az átváltásos rendszerű számábrázo- lás, a tízes, tizenkettes, majd a hatvanas számrendszer. Az egyik első eszköz, amely lehetővé tette az egyszerűbb műveletvégzést, az abakusz volt. Az abakuszt némileg módosítva a XVI. századig a legfontosabb számolást segítő eszközként használták, egyetemen tanították a vele való szorzás és osztás műveletsorát. Az abakusz, más néven soroban mai európai formája a golyós számolótábla. A számolás történetében a tényleges áttörést a logaritmus megjelenése jelentette. John Napier (1550-1617) leírta a logaritmusfüggvényt, a szorzás összeadásra való visszave- zetésének módszerét és eszközét. A tíz számjegynek 1-1 pálca felelt meg, és a rajtuk lévő ro- vások azok többszöröseit jelölték. Ez az eszköz Napier-pálcák néven vált elterjedtté, utóda a logarléc. A XVII. században a hajózási és csillagászati térképek készítése, és az ehhez szüksé- ges számítások elvégzése hosszadalmas és idegőrlő munkát jelentett. A németországi Herrenbergben született Wilhelm Schickard thübingeni csillagász professzor 1623-ban egy egymáshoz illeszkedő fogaskerekekkel működő számológépet tervezett. Ezen - a mai fordu- latszámlálókhoz hasonló elvű gépen - elvégezhető volt mind a négy alapművelet, amely meg- könnyítette a sok számolást igénylő műveletek elvégzését. Mechanikus gépek Az első „szériában gyártott” számológépet 1642-1644 között Blaise Pascal (1623- 1662) készítette el, összesen hét példányban. A kor technikai szintjének megfelelően óraalkat- részekből építette meg a szerkezetet. A gép újdonsága, alapötlete az automatikus átvitelképzés megoldása volt. A számológéppel csak az összeadást és a kivonást lehetett elvégezni, a nem lineáris műveleteket - a szorzást és az osztást - nem. Így ez visszalépést jelentett Schickard készülékéhez képest. Pascal számológépét Gottfried Wilhelm von Leibniz (1646-1716) fejlesztette tovább. Ez a gép volt az első, amely közvetlenül végezte el az osztást és a szorzást, valamint kiegészí- tő művelet nélkül a kivonást. Az általa megépített összeadó-szorzó gép a szorzást visszavezet- te az összeadásra. 1833-ban Charles Babbage (1791-1871) belekezdett fő műve, az analitikus gép elké- szítésébe. A lyukkártya alkalmazásának amerikai úttörője Herman Hollericht (1860-1929) volt, aki egy adatrendező gépet dolgozott ki, melyet népszámláláshoz használt. Minden adathoz egy lyukat, így minden polgárhoz egy lyukkombinációt rendelt. Elektromechanikus gépek A németországi számítógépgyártás meghatározó egyénisége volt Konrad Zuse (1910- 1995) mérnök, aki kezdetben jelfogós gépek építésével foglalkozott. Németországban a hábo- rú előtt a fegyverek előállítása kapcsán jelentősen megnőtt a számítási igény. 1939-ben ké- szült el Zuse első nagy sikerű, jelfogókkal működő, mechanikus rendszerű számítógépe, a Z1. Ez az első gép, mely már a bináris számrendszerre épült. Külön helyezkedett el benne a tár és az aritmetikai egység, az utasítások bevitelére mikronyelvet alkalmazott. Ezt követte a Z2, mely igazolta a Zuse programvezérlési elgondolásainak helyességét. A Z2 továbbfejlesztésé- nek eredményeképpen megszületett a Z3. Az 1900-as években a számítógépek fejlődésének meghatározó személyei közé sorol- juk Wallace J. Eckert (1902-1971), valamint Howard Hathaway Aikent (1900-1973). Aiken kutatása a számítógépekben alkalmazott aritmetikai elemek számának jelentős növelé- sén keresztül a lyukkártyás gépek hatékonyságának növelésére irányult. Aiken és az IBM 1939-ben megállapodást kötött a közös fejlesztő munkára, amelynek eredményeképpen 1944- ben elkészült az elektromechanikus elven működő Mark-I. A gépet egy papírszalagra sorosan felvitt utasítássorral lehetett vezérelni. A készülék kb. százszor volt gyorsabb, mint egy jó kézi számolókészülék, megállás nélkül dolgozott, egy nap alatt hat hónapi munkát végzett el. A Bessel-függvények értékeit számították ki vele táblázatos formában, de más terüle- ten - mint például közönséges és parciális differenciálegyenletek megoldására - nem alkal- mazták. Elektronikus gépek A háború alatt a haditechnika fejlődésével felmerült az igény a számítások precizitásá- nak növelésére. Több gépet is kifejlesztettek, de ezek egyike sem bírta felvenni a versenyt a náluk kb. 500-szor gyorsabb ENIAC-kel (Electronic Numerical Integrator and Computer). A gép 30 egységből állt, minden egység egy meghatározott funkciót végzett el. A főleg aritme- tikai műveletek végrehajtására tervezett egységek között 20 úgynevezett akkumulátor volt az összeadáshoz és a kivonáshoz, továbbá egy szorzó, egy osztó és egy négyzetgyökvonó egység is. A számokat egy IBM kártyaolvasóval összekapcsolt ún. konstans átviteli egységgel lehetett bevinni. Az eredményeket egy IBM kártyalyukasztóval kártyára lyukasztva adta ki. Neumann-elvek A mai értelemben vett számítógépek működési elveit a haditechnikában megszerzett tapasztalatok felhasználásával Neumann János (1903-1957), magyar származású tudós dol- gozta ki. 1945. június 24-re készült el az a kivonat - First Draft of a Report on the EDVAC (Az EDVAC-jelentés első vázlata) címmel -, amely teljes elemzését adta az EDVAC tervezett szerkezetének. Tartalmazta a számítógép javasolt felépítését, a részegységek megépítéséhez szükséges logikai áramköröket és a gép kódját. A legtöbb számítógépet napjainkban is a je- lentésben megfogalmazott elvek alapján készítik el. Fő tételeit ma Neumann-elvekként is- merjük. Alapelvek A számítógép olyan matematikai problémák megoldására szolgál, amelyekre az ember önállóan is képes lenne. A cél a műveletek végrehajtási idejének meggyorsítása. Ennek érde- kében minden feladatot összeadások sorozatára kell egyszerűsíteni, ezután következhet a számolás mechanizálása. Soros működésű, teljesen elektronikus, automatikus gép Neumann János rámutatott a mechanikus eszközök lassúságára és megbízhatatlanságá- ra, helyettük kizárólag elektronikus megoldások használatát javasolta. A gép a műveleteket nagy sebességgel, egyenként hajtja végre, melynek során a nume- rikusan megadott adatokból - az utasításoknak megfelelően - emberi beavatkozás nélkül kell működnie, és az eredményt rögzítenie. Kettes számrendszer használata A kettes számrendszer használatának alapja az a tapasztalat, hogy az elektronikus mű- ködést könnyebb hatékony, kétállapotú eszközökkel megvalósítani. Ehhez elegendő egy olyan rendszer használata, mely két értékkel (igen/nem) dolgozik. A tízes számrendszert a kettessel felváltva az aritmetikai műveletek egyszerűsödnek, nő a sebesség, csökken a tárolási igény, így az alkatrészek száma is, megoldandó feladat ma- rad viszont a folyamatos átváltás. Megfeleljen az univerzális Turing-gépnek Az univerzális gép elvi alapja A. M. Turing (1912-1954) elméleti munkásságának eredménye, aki bebizonyította, hogyha egy gép el tud végezni néhány alapműveletet, akkor bármilyen számításra képes. Ez az aritmetikai egység beiktatásával érhető el, amelynek az összes számítási és logikai művelet végrehajtása a feladata. A műveleti sebesség fokozása érdekében került alkalmazásra a központi vezérlőegy- ség, amely meghatározza a program soron következő utasítását, szabályozza a műveletek sor- rendjét, és ennek megfelelően vezérli a többi egység működését. Turing kutatása megterem- tette a programozható számítógép matematikai modelljét és a digitális számítások elméleti alapját. Belső program- és adattárolás, a tárolt program elve A legfontosabb újítás a belső program- és adattárolás elve, melynek segítségével a műveletek automatikusan következnek egymás után, lassú emberi beavatkozás nélkül. A kül- ső tárolás és szakaszos betöltés helyett az adatok és a programok egy helyen, a belső memóri- ában kerülnek tárolásra. Innen veszi a központi egység a végrehajtandó utasításokat és az azokhoz szükséges adatokat, valamint ide helyezi vissza az eredményt is, így a műveletvégzés sebessége nagyságrendekkel nőhet. Külső rögzítőközeg alkalmazása A számítógépnek a bemeneti (input) és kimeneti (output) egységeken keresztül befelé és kifelé irányuló kapcsolatot kell fenntartani a - lehetőleg - elektronikus vagy mágneses táro- lóeszközökkel. A bemenő egység a külső tárolóeszközről beolvassa a memóriába a szükséges adatokat, majd a műveletvégzések után a kimenő egység átviszi az eredményeket egy leolvas- ható tárolóközegre. Neumann idejében a programtárolás és végrehajtás mechanikus úton - például lyuk- kártyák vagy tárcsák segítségével - történt. Az elektronikus programtárolás és végrehajtás, valamint a kettes számrendszer használatának bevezetése áttörést jelentett mind a sebesség, mind pedig a felhasználási lehetőségek tekintetében. Az elektronikus gépek fejlődésének állomásai A Neumann-elvek alapján készült el az EDVAC (Electronic Discrete Variable Automatic Calculator). Az EDVAC volt az első olyan elektronikus digitális számítógép, amely megfelelt a belső programtárolási koncepciónak. Az EDVAC-ot - az ENIAC-hez ha- sonlóan - a Moore School of Electrical Engineering munkatársai tervezték. A két gép közötti legfontosabb eltérés, hogy az EDVAC elkészítésekor már a tárolt program elvét alkalmazták. Az 1950-es évekre az EDVAC mintájára elkészítették az UNIVAC-ot (Universal Automatic Computer). 1956-ra az USA-ban egyre több intézet és még több iparvállalat fejlesztett ki elektron- csöves számítógépeket. Ekkorra már az IBM sem elégedett meg a lyukkártyás egységek és nyomtatók gyártásával, hanem belefogott számítógépesítési programjába, ami legalább 50 évre biztosította vezető szerepét. Megindult a számítógépek sorozatgyártása. IBM PC: 1981. augusztus 12-én mutatták be, 256 KB memóriával, az Intel cég 8088- as mikroprocesszorával és a Microsoft cég DOS operációs rendszerével. Nem volt benne me- revlemez. IBM XT: 1983-ban került piacra, 640 KB memóriával, az Intel 8086-os processzorá- val és 10 MB-os merevlemezzel. IBM AT 286: 1984-ben jelent meg, az Intel 80286-os processzorával. Memóriája 1 MB-os, de 16 MB-ig bővíthető volt. Ettől kezdve minden újabb IBM számítógép AT-nek számít, és a processzor sorszámában el szokták hagyni a "80" előtagot. Ettől kezdve a piacon számos konkurens gyártó - például az AMD, a Cyrix, a Texas Instruments és a Centaur - által készített klónprocesszorokra épülő számítógép jelent meg, komoly versenyt teremtve a számítógéppiacon. A 386-os generációt lényegesen fejlettebb processzorarchitektúra és nagyobb órajelsebesség jellemzi. Másik fontos tulajdonsága, hogy a 386-os számítógépek egyes típusa- iba a matematikai műveletek elvégzését gyorsító társprocesszort is beépítettek. A 486-os generáció belső működése és felépítése jelentős optimalizáláson esett át, a 386-os processzorokhoz képest jóval magasabb órajelen működtek, valamint matematikai segédprocesszoruk is továbbfejlesztésre került. Újdonságként megjelent az úgynevezett belső gyorsító tár (cache), amely a processzor belső műveletvégzésének meggyorsítására szolgáló, viszonylag kis méretű, de nagyon nagy sebességű memória. A 486-os típusú processzorok után a processzorok fejlődési üteme tovább gyorsult. A gyártók innentől kezdve egyedi márkanevekkel védik új generációs processzoraikat. A legje- lentősebb processzorgyártó, az Intel processzorait Pentium márkanév alatt dobja piacra. En- nek legismertebb változatai a Pentium, Pentium Pro, illetve a Pentium II, III, IV. Egyes változatokkal párhuzamosan Celeron márkanév alatt olcsóbb, kisebb teljesítmé- nyű, otthoni felhasználásra szánt processzorokat is gyártanak. Az Intel mellett az AMD is a piac meghatározó szereplőjévé nőtte ki magát. Az AMD napjainkban K6, K7, Athlon és Athlon XP márkanevű processzoraival teremt a Pentiumoknak erős konkurenciát. E gyártó olcsó kategóriás processzorai Duron néven kerülnek forgalomba. Ma Magyarországon a személyi számítógépek nagy részét Intel és AMD processzorok működtetik. Az előbbiekben ismertetett valamennyi processzort az összetett utasítás-végrehajtási eljárásuk alapján CISC (Complex Instruction Set Computer) processzoroknak nevezzük. A számítógépek másik csoportja a csökkentett utasításkészletű RISC (Reduced Instruction Set Computer) processzorokkal működik. Ezek rendkívül nagy sebességű procesz- szorok, melyeket több gyártó is felhasznál gépeiben. Például RISC-ek működtetik a SUN vagy Silicon Graphics számítógépeket, illetve az Apple által fejlesztett Macintosh személyi számítógépeket is. Ezeket a gépeket speciális, nagy számításigényű feladatok megoldására használják, például filmtrükkök előállítására vagy televíziós vágóstúdiók vezérlésére. A SUN gépek egyes típusai a világ legerősebb hálózati kiszolgáló gépei közé tartoznak. A RISC processzo- rok legnagyobb gyártója a SUN és a Motorola. Számítógépgenerációk A digitális számítógépeket a bennük alkalmazott logikai (kapcsoló) áramkörök fizikai működési elve és integráltsági foka (technológiai fejlettsége) szerint is osztályozhatjuk. Ilyen értelemben különböző számítógép-generációkról beszélhetünk. A továbbiakban a számítógé- pek fejlődésének főbb állomásait mutatjuk be. Első generáció Az ötvenes években a Neumann-elveket felhasználva kezdték építeni az első generáci- ós számítógépeket. Az első elektronikus digitális számítógép az ENIAC. Itt kell megemlíte- nünk az EDVAC és UNIVAC gépeket is. Tulajdonságaik: • működésük nagy energiafelvételű elektroncsöveken alapult, • terem méretűek voltak, • gyakori volt a meghibásodásuk, • műveleti sebességük alacsony, néhány ezer elemi művelet volt másodpercenként, • üzemeltetésük, programozásuk mérnöki ismereteket igényelt. Második generáció A tranzisztor feltalálása az ötvenes évek elején lehetővé tette a második generációs számítógépek kifejlesztését. Tulajdonságaik: • az elektroncsöveket jóval kisebb méretű és energiaigényű tranzisztorokkal helyettesí- tették, • helyigényük szekrény méretűre zsugorodott, • üzembiztonságuk ugrásszerűen megnőtt, • kialakultak a programozási nyelvek, melyek segítségével a számítógép felépítésének részletes ismerete nélkül is lehetőség nyílt programok készítésére, • tárolókapacitásuk és műveleti sebességük jelentősen megnőtt. Harmadik generáció Az ötvenes évek végén a technika fejlődésével lehetővé vált a tranzisztorok sokaságát egy lapon tömöríteni, így megszületett az integrált áramkör, más néven IC (Integrated Circuit). A hetvenes évek számítógépei már az IC-k felhasználásával készültek. Tulajdonságaik: • jelentősen csökkent az alkatrészek mérete és száma, így a gépek nagysága már csak asztal méretű volt, • megjelentek az operációs rendszerek, • a programnyelvek használata általánossá vált, • megjelentek a magas szintű programnyelvek (FORTRAN, COBOL), • műveleti sebességük megközelítette az egymillió elemi műveletet másodpercenként, • csökkenő áruk miatt egyre elterjedtebbé váltak, megindult a sorozatgyártás. Negyedik generáció A hetvenes évek elején az integrált áramkörök továbbfejlesztésével megszületett a mikrochip és a mikroprocesszor, melyet elsőként az Intel cég mutatott be 1971-ben. Ez tette lehetővé a negyedik generációs személyi számítógépek létrehozását. Ebbe a csoportba tartoz- nak a ma használatos számítógépek is. Tulajdonságaik: • asztali és hordozható változatban is léteznek, • hatalmas mennyiségű adat tárolására képesek, • műveleti sebességük másodpercenként több milliárd is lehet, • alacsony áruk miatt szinte bárki számára elérhetőek, • megjelentek a negyedik generációs programnyelvek (ADA, PASCAL). Ötödik generáció Az ötödik generációs számítógépek létrehozására irányuló fejlesztési kísérletek a nyolcvanas évek elején Japánban kezdődtek meg. Tulajdonságaik: • a mesterséges intelligencia megjelenése, • felhasználó-orientált kommunikáció. Míg egy mai számítógép használatakor a felhasználó feladata „megértetni” a végrehaj- tandó műveletsort, addig az ötödik generációs számítógépek hagyományos emberi kommuni- káció révén fogják megérteni és végrehajtani a feladatokat. Ezen gépek működési elve úgyne- vezett neurális hálók használatával valósítható meg, amely a hagyományos rendszerek gyöke- res ellentéte. Az ötödik generációs számítógépek fejlesztése még kezdeti stádiumban van, ezért pia- con való megjelenésükre a közeljövőben nem számíthatunk.